1.为什么航空航天工业要用钛合金材料?

2.钛合金和不锈钢哪个好

3.飞机的发动机是用什么材料做成的

为什么航空航天工业要用钛合金材料?

中国航空材料手册钛合金-航空材料钛合金价格

因为钛是优质的耐腐蚀高强度的材料,镍和钛也可以结合,形成性能更优质的材料。

钛是一种银白色金属,在金属分类中被归类为稀有轻金属。其熔点为1668℃,从体心立方晶格的β相到密排六方晶格的α相,或α相向β相的转变,相变点为882°C。与其他金属相比,钛在化学物质和机械性能方面具有的特性。

金属钛的密度为4.51g/cm?,高于铝而低于钢、铜、镍,但比强度高于铝合金和高强合金钢。比强度高说明了金属材料轻和高强度,所以钛又是一种轻型高强度的金属结构材料。

注意事项:

1、通常认为,钛和钛合金所含有的六方晶格在变形时塑性较低,但是用于其它结构金属的各种压力加工方法也都适用于钛合金。屈服点与强度极限之比乃是指金属能否经受塑性变形的特性指标之一。

此比值愈大,金属的塑性就愈差。对于在冷却状态下的工业纯钛来说,该比值为0.72-0.87,而碳钢为0.6-0.65,不锈钢为0.4-0.5。

2、在加热状态(高于=yS转变温度)下进行体积冲压、自由煅造及其它一些与加工大截面和大尺寸坯件有关的操作。

3、煅造及冲压加热温度范围掌捱在850-1150°C之间。合金BT;M)0、BT1-0、OT4~0及OT4-1在冷却状态下即具有令人满意的塑性变形。因此,用这些合金制成的零件,大多是经过中间退火的坯件不加热冲压而成。

4、钛合金在冷塑性变形时,不管其化学成分和机械性能如何,强度会大大提髙,而塑性相应降低,为此就必须进行工序间的退火处理。

钛合金和不锈钢哪个好

钛合金和不锈钢哪个好

在金属材料中,钛合金和不锈钢都是非常优秀的材料,它们各自具有独特的优点和用途。然而,对于哪个更好,这取决于个人的需求和偏好。以下是我对钛合金和不锈钢区别的整理。

材料成分不同:不锈钢是一种合金钢,通常由铁、碳、铬和少量镍等元素组成。钛金是一种钛合金,主要由钛、铝和钒等元素组成。

用途不同:不锈钢是一种通用材料,主要用于制造家电、工具、医疗设备、化工容器和建筑材料等。钛金具有很高的耐腐蚀性、强度和轻质等优点,通常用于制造航空航天、医疗器械、汽车轮毂和高档手表等高科技产品。

成本不同:不锈钢的成本相对较低,价格较为稳定,适合大规模生产制造。钛金的生产成本较高,适合制造高端产品。

耐蚀性能不同:不锈钢材料的耐腐蚀性能取决于材料的成分和表面处理。适当的镍含量和表面处理可以增强不锈钢的耐腐蚀性。钛金材料具有更高的耐腐蚀性和抗氧化能力,可承受极端温度和环境。

机械性能不同:不锈钢的强度和硬度依赖于具体的合金成分和沉淀强化机理,通常具有较高的屈服强度和抗拉强度,但塑性和冲击强度相对较低。钛金具有更高的强度和轻质性,弹性模量和刚度也较高。

然而,对于哪个更好,这取决于个人的需求和偏好。如果您需要一种轻质、高强度的金属材料,那么钛合金可能是更好的选择。如果您需要一种具有高耐腐蚀性和良好美观性的金属材料,那么不锈钢可能是更好的选择。

总的来说,钛合金和不锈钢都是非常优秀的金属材料,它们各自具有独特的优点和用途。在选择时,我们应该根据自己的需求和偏好进行选择。

飞机的发动机是用什么材料做成的

航空航天发动机上所用的材料。

一、合金

1、铝合金

铝合金具有比模量与比强度高、耐腐蚀性能好、加工性能好、成本低廉等突出优点,因此被认为是航空航天工业中用量最起着至关重要的作用。

主要应用位置:发动机舱、舱体结构、承载壁板、梁、仪器安装框架、燃料储箱等。

2、钛合金

与铝、镁、钢等金属材料相比,钛合金具有比强度很高、抗腐蚀性能良好、抗疲劳性能良好、热导率和线膨胀系数小等优点,可以在350~450℃以下长期使用,低温可使用到-196℃。

主要应用位置:航空发动机的压气机叶片、机匣、发动机舱和隔热板等。

3、超高强度钢

超高强度钢具有很高的抗拉强度和足够的韧性,并且有良好的焊接性和成形性。

主要应用位置:航天发动机壳体、发动机喷管、轴承和传动齿轮。

4

镁合金

镁合金是最轻的金属结构材料,具有密度小、比强度高、抗震能力强、可承受较大冲击载荷等特点。

主要应用位置:航天发动机机匣、齿轮箱等。

二、复合材料

航空发动机的发展之快,尤其是越来越严苛的温度和重量要求,渐进提高的传统材料已然不能满足,转而呼唤材料科学开辟新的体系,那就是复合材料。根据复合材料各自的特点,可用于发动机不同的零部件上。

1、碳碳复合材料

C/C基复合材料,即碳纤维增强碳基本复合材料,它把碳的难熔性与碳纤维的高强度及高刚性结合于一体,使其呈现出非脆性破坏。由于它具有重量轻、高强度,优越的热稳定性和极好的热传导性,是当今最理想的耐高温材料,特别是在 1000-1300℃的高温环境下,它的强度不仅没有下降,反而有所提高。是近年来最受重视的一种更耐高温的新材料。最显著的优点是耐高温(大约2200℃)和低密度,可使发动机大幅度减重,以提高推重比。

主要应用位置:碳碳复合材料如果能够解决表面以及界面在中温时的氧化问题,并能在制备时提高致密化速度,并降低成本,则有望在航空发动机中得到大量的实际应用。

目前已有部分应用,例如美国的F119发动机上的加力燃烧室的尾喷管,F100发动机的喷嘴及燃烧室喷管,F120验证机燃烧室的部分零件已采用C/C基复合材料制造。法国的M88-2发动机,幻影2000型发动机的加力燃烧室喷油杆、隔热屏、喷管等也都采用了C/C基复合材料。

2、陶瓷基复合材料

陶瓷基复合材料(CMC)由于其本身耐温高、密度低的优势,在航空发动机上的应用呈现出从低温向高温、从冷端向热端部件、从静子向转子的发展趋势。

CMC材料具有耐温高、密度低、类似金属的断裂行为、对裂纹不敏感、不发生灾难性损毁等优异性能,有望取代高温合金满足热端部件在更高温度环境下的使用,不仅有利于大幅减重,而且还可以节约甚至无须冷气,从而提高总压比,实现在高温合金耐温基础上进一步提升工作温度400~500℃,结构减重50%~70%,成为航空发动机升级换代的关键热结构用材。

主要应用位置:短期目标为尾喷管、火焰稳定器、涡轮罩环等;中期目标是应用在低压涡轮叶片、燃烧室、内锥体等;远期目标锁定在高压涡轮叶片、高压压气机和导向叶片等应用。

3、树脂基复合材料

先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于后二者。

主要应用位置:航空发动机冷端部件(风扇机匣、压气机叶片、进气机匣等)和发动机短舱、反推力装置等部件上得到广泛应用。

4、金属基复合材料

金属基复合材料主要是指以Al、Mg等轻金属为基体的复合材料。在航空和宇航方面主要用它来代替轻但有毒的铍。这类材料具有优良的横向性能、低消耗和优良的可加工性,已成为在许多应用领域最具商业吸引力的材料,并且在国外已实现商品化。

主要应用位置:适合用作发动机的中温段部件。