等离子弧焊接钛钽及锆合金时-福建等离子焊接钛合金价格
1.请问什么是等离子弧焊?
2.一舨tlg焊接的大多数金属都可以用等离子焊件吗?
3.等离子弧焊的组成结构
4.钛合金生产制造新方法——增材制造
请问什么是等离子弧焊?
等离子弧焊,顾名思义就是以等离子弧为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦或氩氦、氩氢等混合气体的。广泛用于工业生产,特别是航空航天等军工和尖端工业技术所用的铜及铜合金、钛及钛合金、合金钢、不锈钢、钼等金属的焊接,如钛合金的导弹壳体,飞机上的一些薄壁容器等。
一舨tlg焊接的大多数金属都可以用等离子焊件吗?
TIG焊接的金属,完全都可以用等离子焊接的。
TIG焊:钨极氩弧焊。以非熔化电极(钨极)提供电弧能量,熔化焊丝及母材形成熔池焊接的一种气体保护电弧焊焊接工艺。用于焊接有色金属(铜及铜合金、铝及铝合金、钛及钛合金等)、碳素钢、合金钢、压力容器管道打底焊等场合。
等离子焊类似于钨极氩弧焊。不同之处是:等离子焊钨极是内缩的。等离子焊枪可以提供压缩电弧。需要保护气体及等离子气体共同保护的一种气体保护电弧焊焊接工艺。相比钨极氩弧焊,等离子焊焊接能量更为集中。
等离子焊完全可以替代钨极氩弧焊。还可以焊接钨极氩弧焊较难焊接的耐热合金等材质。焊接热输入小、焊接质量高。目前由于市场还未完全普及,焊机价格较贵。相比氩弧焊等离子焊较难以实现手工焊接。
等离子弧焊的组成结构
和钨极氢弧焊一样,按操作方式,等离子弧焊设备可分为手工焊和自动焊两类。手工焊设备由焊接电源、焊枪、控制电路、气路和水路等部分组成。自动焊设备则由焊接电源、焊枪、焊接小车(或转动夹具)、控制电路、气路及水路等部分组成。
焊接电源
下降或垂直下降特性的整流电源或弧焊发电机均可作为等离子弧焊接电源。用纯氢作为离子气时,电源空载电压只需65-80V;用氢、氢混合气时,空载电压需110-120 0
大电流等离子弧都采用等离子弧,用高频引燃非转移弧,然后转移成转移弧。
30A以下的小电流微束等离子弧焊接采用混合型弧,用高频或接触短路回抽引弧。由于非转移弧在非常焊接过程中不能切除因此一般要用两个独立的电源。
气路系统
等离子弧焊机供气系统应能分别供给可调节离子气、保护气、背面保护气。为保证引弧和熄弧处的焊接质量,离子气可分两路供给,其中一路可经气阀放空,以实现离子气流衰减控制。
控制系统
手工等离子弧焊机的控制系统比较简单,只要能保证先通离子气和保护气,然后引弧即可。自动化等离子弧焊机控制系统通常由高频发生器,小车行走。填充焊口逆进拖动电路及程控电路组成。程控电路应能满足提前送气、高频引弧和转弧、离子气递增、延迟行走、电流和气流衰减熄弧。延迟停气等控制要求。
一种新开发的用于等离子弧焊的焊矩系统,采用反极性电极和选用100~200A焊接电流可以经济有效地焊接铝制零件,焊接质量很好。经对各种铝镁合金的焊接试验表明:在焊接2~8mm的板材时,可以使用熔入和锁孔式焊接技术。
使用电极极性可变的锁孔技术进行等离子弧焊,可用来焊圆周焊缝,如AlMg3管道、法兰盘以及GK-AlSi7Mg冷铸合金制造的形状各异的零件,能够进行8mm壁厚材料的无坡口对焊连接。使用新开发的特殊气体控制系统可以无缺陷地完成圆周焊缝的收尾焊接。由于只在铸件一侧才会产生气孔,因此要确定铸件熔化金属的原子氢含量。如果铸件熔化金属中的氢含量低于0.3mL/100g,焊缝产生的气孔就很少。采用此方法要修复的焊缝总长度可达39m,占整个焊缝长度的27.2%。
在研究开发最现代化的电源和控制技术条件下,采用等离子弧焊技术是一种质量最佳、经济有效、重复性好的连接工艺。另外,通过调节电流,确保厚板等离子弧对接接头焊接时产生锁孔的传感器系统、导电的熔池支撑与被焊板材绝缘,并通过带电的车架在等离子弧穿透时测量电流,并随之移动。
这种新的工艺与TIG焊接相比具有如下特点:
(1)采用等离子弧焊时的特定工艺优点,不仅主要表现在微型等离子弧焊的板材厚度范围方面,而且涉及使用锁孔技术。
应用范围包括:表面堆焊、喷涂和焊接。通过可调频率使用低脉冲焊接电流,等离子弧焊可以更好的方式控制电弧能量的大小,能够通过现代控制系统可靠地同步监测各种设定值的执行情况。晶体管的焊接电源,如 AUTOTIG系列,可以精确地按照技术规格的规定运行。
(2)用粉末等离子弧焊焊接薄板和管道时,具有焊接速度快、热输入小和变形小等优点。
(3)等离子弧焊接时,锁孔技术的优点还清楚地在板厚达10mm的材料焊接方面体现。在应用技术中,粉末等离子弧焊接具有稳固的市场地位。这种新的工艺也将会在机器人上得到应用。
杨怀文
索引:等离子弧焊的几个工艺参数
关键词:焊接电流,焊接速度,喷嘴离工件的距离,等离于气及流量,引弧及收弧,接头形式和装配要求,
(1)焊接电流
焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。
(2)焊接速度
焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。
(3)喷嘴离工件的距离
喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。
(4)等离于气及流量
等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。
离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。
保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。
小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。
(5)引弧及收弧
板厚小于3mm时,可直接在工件上引弧和收弧。利用穿孔法焊接厚板时,引弧及熄弧处容易产生气孔、下凹等缺陷。对于直缝,可采用引弧板及熄弧板来解决这个问题。先在引弧板上形成小孔,然后再过渡到工件上去,最后将小孔闭合在熄弧板上。
大厚度的环缝,不便加引弧板和收弧板时,应采取焊接电流和离子气递增和递减的办法在工件上起弧,完成引弧建立小孔并利用电流和离子气流量衰减法来收弧闭合小孔。
(6)接头形式和装配要求
工件厚度大于1.6mm时,小于表1-1列举的厚度时,采用I形坡口,用穿孔法单面焊双面成形一次焊透。工件厚度大于表1-1列举的数值时,根据厚度不同,可开V形、U形或双V形、双U形坡口。
工件厚度小于1.6mm,采用微束等离子弧焊时,接头形式有对接、卷边对接、卷边角接、端面接头。当厚度小于0.8mm时,接头装配要求见表1-2。
摘 要:提出了一种基于等离子弧焊的直接金属成形新方法,通过对成形工艺的试验研究,确定了焊接电流、成形速度与成形轨迹宽度之间的对应关系;针对成形轮廓的表面质量问题,实施了根据轮廓矢量进行切向送丝的填充方案;并采用循环水冷的温控措施解决了成形过程的过热问题。
送丝角度对成形轨迹的影响
本文在实验中发现,对零件外轮廓进行扫描时,填充丝材送入的方向同外轮廓切向的夹角对轮廓成形的质量有显著的影响。在直接金属成形系统运动机构的早期设计中, 焊炬和送丝机构固定不动,保持送丝方向在空间上不变, 这样当XY 二维工作台沿着成形轮廓插补运动时, 送丝方向与成形轮廓的运动方向就会形成一定的夹角α,如图3。当夹角α较小时,轨迹成形所受影响不大,但是, 当α增加到一定程度后成形轨迹的表面波纹度开始增大,表面质量明显变差。
图4是不同送丝角度下成形轨迹的形貌。可以看出,送丝角度保持在小角度范围内时,成形轨迹表面质量较好;而随着送丝角度的增加,成形轨迹表面的波浪度增大;当送丝角度进一步增大时,熔化的焊丝不能进入熔池,团成球状凝结于扫描路径外侧,不能形成完整的轨迹。
成形过程不均匀的热场和力场分布,是造成这种现象的主要原因。小角度,特别是切向送丝时,焊丝送入的方向与焊接热场移动的方向相符,焊丝能够得到足够的热量迅速熔化,并与熔池形成搭桥过渡,顺利进入熔池,如图5。固定送丝方向时,随着焊丝与轨迹切向夹角的增大,焊丝吸收的热量减少,难以形成顺利的搭桥过渡,焊丝熔化后团聚成球状,难以送入熔池中心,在自重作用下落于熔池边缘,如图6。
成形件的外轮廓总是由各种形式的曲线构成的,如果在成形曲线的过程中保持送丝的角度不变,势必会引起熔滴过渡的条件时好时坏,容易在曲线轨迹表面形成图7中所示的积瘤、夹丝等缺陷。因此,成形过程中,为了保证成形轨迹轮廓的一致均匀性,应根据成形轮廓切向的变化,不断调整送丝角度,使二者保持一致,如图8。
为了方便送丝角度的动态调整,本文对直接金属成形系统的机构部分进行了改进,将先前固定的焊炬和送丝机构置于回转工作台上,回转工作台通过步进电机在计算机系统的控制下可以随扫描轨迹的走向自适应旋转,以保证送丝机构沿扫描轮廓的切向均匀连续地送丝。图9即为改进后的直接金属成形系统部分实物照片,图10是采用送丝角度调整后成形轮廓的外观情况,通过送丝角度的调整,成形件的外观质量得到了改善。
冷却措施
在成形过程中,成形件要承受电弧热量的连续输入,从而造成其整体温度升高,成形轨迹热影响区变大,熔池金属流动性增强等热效应,这对于控制成形件表面质量极为不利。而焊后引起的整体热变形对成形件的尺寸及形状都有很大的影响。对于具有薄壁特征的成形件,其传热途径更为局限,因此,这种热效应就更为严重(如图11) 。因此,有必要采取可靠的传热措施,控制成形过程中成形件的热量传递。
针对这种现象,本文在实验中采用循环水冷的方法,增强成形过程中成形件的热量传递。具体实施方法如图12所示,将基底放入水槽中进行焊接成形;当成形过程中出现过热效应时,开始通入循环冷却水;并使冷却水的液面始终与当前熔焊层保持3 mm~5 mm的距离,以保持良好的散热效果。这样可以大大改善成形件的热传递过程,同时也可在一定程度上增强保护气体的保护效果。
等离子是指在标准大气压下温度超过3000℃的气体,在温度谱上可以把其看作为继固态、液态、气态之后的第四种物质状态。等离子是由被激活的高子、电子、原子或分子组成。例如:它可通过自然界中的闪电产生。从1960年以后,等离子这个词获得了新的含义,那就是电弧通过涡流环或喷嘴压缩而形成的高能量状态,此原理被广泛用于钢铁、化工及机械工程工业。
等离子弧焊是在钨极氩弧焊的基础上发展起来的一种焊接方法。钨极氩弧焊使用的热源是常压状态下的自由电弧,简称自由钨弧。等离子弧焊用的热源则是将自由钨弧压缩强化之后而获得电离度更高的电弧等离子体,称等离子弧,又称压缩电弧。两者在物理本质上没有区别,仅是弧柱中电离程度上的不同。经压缩的电弧其能量密度更为集中,温度更高。
等离子弧的最大电压降是在弧柱区里,这是由于弧柱被强烈压缩,使电场强度明显增大的缘故。因此,等离子弧焊主要是利用弧柱等离子体热来加热金属,而自由钨弧是利用两电极区产生的热来加热母材和电极金属。
等离子弧的静特性曲线接近U形(图1-2)。与自由钨弧比较最大区别是电弧电压比自由钨弧高。此外,在小电流时,自由钨弧静特性为陡降(负阻特性)的,易与电源外特性曲线相切,使电弧失稳。而等离子弧则为缓降或平的,易与电源外特性相交建立稳定工作。
表示了等离子弧与自由钨弧的形态区别。等离子弧呈圆柱形,扩散角约5度左右,焊接时,当弧长发生波动时,母材的加热面积不会发生明显变化,而自由钨弧呈圆锥形,其扩散角约45度,对工作距离变化敏感性大。
等离子弧的挺直度非常好。由于等离子弧是自由钨弧经压缩而成,故其挺度比自由钨弧好,焰流速度大,可达300m/s以上,因而指向性好,喷射有力,其熔透能力强。
综述
穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。
高温合金焊接
用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,可以填充焊丝也可以不加焊丝,均可以获得良好质量的焊缝。一般厚板采用小孔型等离子弧焊,薄板采用熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采用陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有很高的同心度。等离子气流和焊接电流均要求能递增和衰减控制。
焊接时,采用氩和氩中加适量氢气作为保护气体和等离子气体,加入氢气可以使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采用填充焊丝根据需要确定。选用填充焊丝的牌号与钨极惰性气体保护焊的选用原则相同。
高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的基本相同,应注意控制焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应控制焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。
铝及铝合金
等离子弧是以钨极作为电极,等离子弧为热源的熔焊方法。焊接铝合金时,采用直流反接或交流。铝及铝合金交流等离子弧焊接多采用矩形波交流焊接电源,用氩气作为等离子气和保护气体。对于纯铝、防锈铝,采用等离子弧焊,焊接性良好;硬铝的等离子弧焊接性尚可。
为了获得高质量的焊缝应注意以下几点。
a.焊前要加强对焊件、焊丝的清理,防止氢溶人产生气孔,还应加强对焊缝和焊丝的保护。
b.交流等离子弧焊的许用等离子气流量较小,流量稍大,等离子弧的吹力过大,铝的液态金属被向上吹起,形成凸凹不平或不连续的凸峰状焊缝。为了加强钨极的冷却效果,可以适当加大喷嘴孔径或选用多孔型喷嘴。
c.当板厚大于6mm时,要求焊前预热100--200℃。板厚较大时用氦作等离子气或保护气,可增加熔深或提高效率。
d.需用的垫板和压板最好用导热性不好的材料制造(如不锈钢)。垫板上加工出深度lmm、宽度20~40mm的凹槽,以使待焊铝板坡口近处不与垫板接触,防止散热过快。
e.板厚不大于lOmm时,在对接的坡口上海间隔150mm点固焊一点;板厚大于l0mm时,每间隔300mm点固焊一点。点固焊采用与正常焊接相同的电流。
f.进行多道焊时,焊完前一道焊道后应用钢丝或铜丝刷清理焊道表面至露出纯净的铝表面为止。
表1-2列出纯铝自动交流等离子弧焊接的工艺参数。表1-3列出铝合金直流等离子弧焊接的工艺参数。
钛、钛合金
等离子弧焊能量密度高、线能量大、效率高。厚度2.5~15mm的钛及钛合金板材采用小孔型方法可一次焊透,并可有效地防止产生气孔,熔透型方法适于各种板厚,但一次焊透的厚度较小,3mm以上一般需开坡口。
钛的弹性模量仅相当于铁的1/2,因此在应力相同的条件下,钛及钛合金焊接接头将发生比较显著的变形。等离子弧的能量密度介于钨极氩弧和电子束之间,用等离子弧焊接钛及钛合金时,热影响区较窄,焊接变形也较易控制。微束等离子弧焊已经成功地应用于薄板的焊接。采用3~10A的焊接电流可以焊接厚度为0.08~0.6mm的板材。
由于液态钛的密度较小,表面张力较大,利用等离子弧的小孔效应可以单道焊接厚度较大的钛和钛合金,保证不致发生熔池坍塌,焊缝成形良好。通常单道钨极氩弧焊时工件的最大厚度不超过3mm,并且因为钨极距离熔池较近,可能发生钨极熔蚀,使焊缝渗入钨夹杂物。等离子弧焊接时,不开坡口就可焊透厚度达15mm的接头,不可能出现焊缝渗钨现象。
钛板等离子弧焊接的工艺参数见表1-4。TC4钛合金等离子弧焊和TIG焊接接头的力学性能见表1-5。
焊接航天工程中应用的TC4钛合金高压气瓶的研究结果表明,等离子弧焊接头强度与氩弧焊相当,强度系数均为90%,但塑性指标比氩弧焊接头高,可达到母材的75%。根据30万吨合成氨成套设备的生产经验,用等离子弧焊接厚度10mm的TAl工业纯钛板材,生产率可比钨极氩弧焊提高5~6倍,对操作的熟练程度要求也较低。
纯钛等离子弧焊的气体保护方式与钨极氩弧焊相似,可采用氩弧焊拖罩,但随着板厚的增加、焊速的提高,拖罩要加长,使处于350℃以上的金属得到良好保护。背面垫板上的沟槽尺寸一般宽度和深度各为2.0~3.0mm,同时背面保护气体的流量也要增加。厚度15mm以上的钛板焊接时,开6~8mm钝边的V形或U形坡口,用小孔型等离子弧焊封底,然后用熔透型等离子弧填满坡口。用等离子弧封底可以减少焊道层数,减少填丝量和焊接角变形,提高生产率。熔透型多用于厚度3mm以下薄件的焊接,比钨极氩弧焊容易保证焊接质量。
银与铂
银与铂都属于贵金属,价格昂贵。银与铂可制成板材、带材、线材等常用于微电子,仪器仪表、医药等特殊产品或军工产品。
银与铂电子器件的微束等离子弧接的工艺要点如下:
a.焊前将银与铂的接头处清理干净;
b.将两种金属预热到400~500℃,
c.采用微束脉冲等离子弧,维弧电流为24A;
d.保护气体流量为6L/min,离子气流量为0.5L/min。
银与铂电子器件微束等离子弧焊接的工艺参数见表1-6
钛合金生产制造新方法——增材制造
增材制造技术的快速发展,为钛合金的生产制造提供了新的方法,激光/电子束、熔焊和固态焊三种增材制造方法在钛合金生产中得到了国内学者的广泛研究。研究表明,钛合金采用增材技术可得到高质量零件,但不同增材技术具有不同技术特征,实际应用及未来发展中需要根据实际需求采用不同的增材方法。
1.序言
钛及钛合金因具有密度小、耐高温、耐腐蚀等优异的物理性能及化学性能,在各工业领域都具有广阔的应用前景,包括船舶制造、航天航空、汽车制造等,同时它也是国防工业的重要材料之一。钛合金的应用对工业发展起到巨大的推动作用,优于传统材料的性能使其产品质量有了很大提升,满足了工业发展对新材料、新工艺的发展要求,加速了现代工业的发展。随着钛生产力的不断改善,钛合金已经成为工业生产中的第三金属。
增材制造(Additive Manufacturing,AM)又称“3D打印”,是一种可以实现构件的无模成形的数字化制造技术,具有设计和制造一体化、加工精度高、周期短,产品物理化学性能优异等特点。增材制造技术从20世纪70年代以来发展迅速,因其与传统制造技术具有巨大差异,已然成为工业领域的研究热点,在现代工业的多领域都得到了快速发展。
增材制造技术的迅速发展,理论上可以实现任何单一或多金属复合结构,为复杂结构件的制造提供了新方法。钛合金的增材制造技术,解决了精密结构件的加工难题,进一步加大了钛合金的应用范围。伴随着工业社会的迅速发展,钛合金增材制造技术日新月异,按照增材制造技术的热源不同,可将钛合金增材制造技术分为激光/电子束增材制造、熔焊增材制造和固态焊增材制造三种方式。国内外的专家学者通过不同的增材制造技术手段,优化工艺方法,稳定增材制造过程,减少或避免增材制造结构缺陷产生,使钛合金增材制造技术朝着绿色、高效、稳定的方向继续发展。
2. 激光/电子束增材制造
激光束和电子束作为高密度束源,能量密度高并可调控,被誉为21世纪最先进的制造技术。目前激光/电子束增材制造主要分为激光金属沉积(Laser Mental Deposition,LMD)技术、激光选区熔化(Selective Laser Melting,SLM)技术、电子束熔丝沉积(Electron Beam Free Form Fabrication,EBF3)技术、电子束选区熔化(Electron BeamMelting,EBM)技术,在钛合金增材制造领域皆有广泛研究。
2.1 激光金属沉积(LMD)
Mahamood等人采用LMD技术进行了Ti6Al4V/TiC 的功能梯度材料(Functionally gradedmaterials,FGM)研究,根据早期经验模型进行工艺优化,获得优化后的功能梯度材料,对其组织、显微硬度、耐磨性进行表征。研究结果表明,采用优化后工艺参数制造的功能梯度材料拥有更高的性能,硬度是基体硬度的4倍,高达1200HV。Silze等人利用新型半导体激光器采用LMD技术进行Ti6Al4V的增材制造试验研究,LMD装置是由6个200W半导体激光头圆形环绕在进给枪上(见图1),激光束直径0.9mm,可以实现方向独立的焊接工艺过程,显微结构无缺陷。研究结果表明,随着层间停留时间的延长,冷却时间增加,晶粒厚度降低,有助于提高材料的力学性能,采用LMD技术增材制造均能满足锻造Ti6Al4V所规定的最低屈服强度和抗拉强度要求。
Heigel等人采用原位温度、应力实时测量与热机模型结合有限元热-应力顺序耦合模型的方式,研究了Ti6Al4V激光沉积增材制造过程中的热、力演化过程,结果发现残余应力最大力出现在增材层的中心下方,向两侧方向应力减小,随着停留时间增加,层间温度差变大,残余应力增大。左士刚利用TA15钛合金球形粉末采用激光沉积技术进行了TC17钛合金增材修复制造过程研究,研究了修复件组织特性与力学性能影响规律。结果表明,采用激光沉积技术增材修复后的TA15/TC17修复件无焊接缺陷,修复件抗拉强度为1029MPa,采用退火处理后,力学性能明显增强,抗拉强度基本可达TC17锻件标准,伸长率优于标准。
综上所述,对于钛合金的LMD技术增材制造相对较为稳定,增材件力学性能基本满足锻件最低标准,对于某些特定需求钛合金则要进行增材制造后热处理的方式达到使用要求。
2.2 激光选区熔化(SLM)
唐思熠等人采用SLM技术制备Ti6Al4V钛合金试样(见图2),并对微观组织、力学性能和致密化行为进行了分析研究。结果发现,激光功率从360W增加到400W时,致密度提高明显;在400W后继续增加功率,致密度受激光扫描速度的影响较大,最优工艺参数下的试样质量远高于锻件标准。
Polozov等人采用SLM技术进行增材制造Ti-5Al、Ti-6Al-7Nb和Ti-22Al-25Nb块状合金,对Ti-Al-Nb系统进行退火处理,对试样进行系统表征研究。结果发现,Ti-5Al可以采用SLM增材制造成钛合金,Ti-6Al-7Nb和Ti-22Al-25Nb则需要在1350℃下热处理才能完全溶解Nb颗粒,但是此时样品氧含量较高,力学性能降低。
Fan等人研究了SLM技术增材制造Ti-6Al-2Sn-4Zr-2Mo(Ti-6242)钛合金在标准时效(595℃/8h)下的显微组织稳定性。研究结果发现,随着激光扫描速度的提高,相对密度增加到99.5%后急剧下降到大约95.7%,时效老化处理的Ti-6242相对刚制成的Ti-6242抗拉强度从1437MPa提升至1510MPa,延展性从5%降低到1.4%,同时硬度也从410HV增加到450HV,β相颗粒的沉淀硬化作用是产生这种变化的重要原因。
Ren等人采用SLM技术增材制造进行了Ti-Ni形状记忆合金组织性能的研究工作,制备等原子Ti50Ni50(质量分数)样品,结果发现,在激光功率为40J/mm3,扫描速度为1000mm/s下可制造几乎完全致密试样,不同扫描速度对相组成、相变温度和维氏硬度的影响作用有限,与传统铸件相比,SLM技术增材制造件拥有较高的真空压缩和断裂强度。
综上所述,对于Ti6Al4V的SLM技术增材制造相对较容易实现,对于钛与其他元素合金的SLM技术增材制造还需要做进一步地研究,需要进行预热或者其他热处理手段和进行氧含量的控制手段来增强其他钛合金SLM技术增材制造的力学性能,获得高质量的研究试样。
2.3 电子束熔丝沉积(EBF3)
靳文颖研究了TC4钛合金的电子束熔丝沉积增材修复技术,进行了普通TC4焊丝和自制TC4EH焊丝的增材修复性能对比。研究发现,采用自制TC4EH焊丝的抗拉强度(905.23MPa)明显高于TC4普通焊丝(809.04MPa),硬度和冲击韧度同样较高,伸长率可达原材料的90%以上,具有优良的力学性能。
Chen等人进行了电子束熔丝沉积Ti6Al4V变形控制研究(见图3),电子束以100~150mA之间的扫描电流和低于100mm/s的速度工作,则可以形成薄壁件,扫描形式对残余应力分布影响不大,单向扫描变形更大,收缩变形在往返扫描情况下较为明显,并且与电流变化成正比关系,同时,发现基板底部恒定温度约束下,变形得到改善。
Yan等人研究了电子束熔丝沉积Ti6Al4V加强筋的残余应力与变形,研究发现,两个加强筋都对板产生不利的变形,纵向轨道比横向轨道引起板更大的变形,加强筋的沉积轨迹对变形有很大影响,最大位移发生在与纵向轨道相关的加强筋的内底边缘,高残余应力区域主要集中在加强筋的根部。
综上所述,对于钛合金的电子束熔丝沉积增材制造的研究相对较少,主要偏向借助有限元分析软件的变形控制等领域。分析认为,电子束熔丝沉积增材制造可以克服传统的钛合金加工方式的弊端,借助有限元分析软件更为实际应用过程中提供了基础理论的指导。
2.4 电子束选区熔化(EBM)
Murr等人采用EBM增材制造的方法制备多孔泡沫Ti6Al4V,研究了刚度与密度之间的关系。结果发现泡沫具有实心孔和中空孔结构,与实心、紧密的EBM制造件相比,中空孔结构的强度与硬度成正比,强度高出40%,并且刚度与孔隙率成反比,采用EBM增材制造的泡沫材料在生物医学、航空航天等领域的应用具有巨大潜力。
许飞等人采用电子束选区熔化技术对制备的TC4钛合金开展了大功率高速光纤激光焊接试验研究。结果表明,受EBM技术增材制造TC4的晶粒尺寸差异的影响,激光焊接试验熔合区靠近上下表面的β柱状晶组织相对细小。焊缝区显微硬度高于增材区硬度,且顶部硬度较高。
Seifi等人研究利用EBM增材制造Ti-48Al-2Cr-2Nb的组织性能研究,结果发现,所沉积的材料强度和硬度值超过了常规铸造Ti-Al所获得的强度和硬度值,这与目前测试的增材材料中存在更精细的微观结构相一致。
Surmeneva等人研究了采用EBM技术增材Ti–10%Nb(质量分数,下同)的组织性能研究。结果发现,通过EBM技术元素Nb和Ti的粉末混合物中原位生产Ti-10%Nb合金,最大的Nb颗粒保留在EBM制造的样品中,并且Nb仅部分扩散到Ti中,如图4所示,应该对EBM工艺的参数优化进行更多的研究,以实现更均匀的合金显微组织。
综上所述,对于Ti6Al4V的EBM研究相对较为广泛,发现对于Ti-Nb合金的EBM技术增材制造仍难很好地解决Nb颗粒的扩散问题,会导致显微组织不均匀,因此对于Ti-xNb合金的增材制造还需要更多的工艺优化试验进行材料性能的提升。
3.熔焊增材制造
与其他增材制造方式相比,熔焊增材制造操作性更强,成本更低,但结构可靠性相对较低。熔焊增材制造一般采用焊丝增材制造,但是由于基材和初始沉积层之间的热梯度大,以及辐射和对流热损失,会在制造的部件底部观察到细晶粒结构。由于较低的热梯度,传热速率较低,这阻碍了在增材过程的中间层形成细晶粒结构,而只在制造部件的中间形成长的柱状晶粒。
3.1 CMT电弧增材制造
李雷等人采用CMT电弧增材TC4薄壁结构,研究其增材层组织性能。结果发现,由于增材过程热循环的反复作用,原始β柱状晶晶界、水平层带条纹、马氏体组织和网篮组织等形态出现在增材层中,由于时效作用,对中下部区域产生强化作用,造成上部增材层显微硬度略低于中下部显微硬度(见图5)。
陈伟进行了CMT电弧增材TC4的微观组织及力学性能研究。结果发现,在设定送丝速度为3.0m/min、焊接速度为0.48m/min的参数下,原始β晶粒剖面面积最小,CMT电弧增材制造TC4钛合金在870℃,1h/固溶炉冷(FC)+600℃、2h/固溶空冷(AC)下热处理,获得的各区域微观组织较均匀,固溶处理后的材料塑性较高。
3.2 等离子弧增材制造
Lin等人采用PAW增材制造Ti6Al4V,在微观结构和显微硬度方面进行了研究。结果发现,先前的β柱状晶粒的外延生长受到脉冲扰动的抑制,这导致形成了具有接近等轴晶粒的柱状晶粒,在沉积早期,由于热循环不足,显微硬度较低,在后续沉积中,硬度升高,在沉积层的顶部,不受连续热循环的影响,导致第二相的体积减小,硬度值降低。
马照伟进行了旁路热丝等离子弧增材制造钛合金的组织性能研究(见图6)。结果发现,钛合金增材构件的横向抗拉强度为977MPa,强度与TC4母材的抗拉强度相当,断裂位置在增材直壁结构尾部区域,这是由于横向焊缝为连续熔化-凝固而来,焊缝中的缺陷和杂质较少,使得横向焊缝具有良好强度性能的钛合金增材构件的竖向抗拉强度为
936MPa,断裂位置在增材直壁结构上部区域,性能较横向焊缝稍差。靠近母材的热影响区硬度相对较低,出现了小范围的软化区,整体的竖向硬度差别并不明显。
3.3 复合电弧增材制造
Pardal等人进行了激光和CMT复合焊接增材制造Ti6Al4V的结构件稳定性研究。结果发现,激光可用于稳定焊接过程,减少焊接飞溅,改善电弧漂移的情况,改善单层和多层沉积的焊缝形状,并将Ti6Al4V增材制造的沉积速率从1.7kg/h提高到2.0kg/h。
综上所述,对于熔焊增材制造钛合金主要集中在TC4的研究中,多采用CMT、等离子等高效熔丝工艺方式,同时采用其他热源辅助焊接的方式稳定焊接过程,进行钛合金的增材制造。分析认为,对于熔焊钛合金增材制造的发展方向应开拓研究制备钛合金功能性材料,便于多领域全方位的应用推广,复合热源的增材方式或其他可控热输入的稳定
增材方式会成为熔焊增材的热门研究方向。
4.固态焊增材制造
4.1 搅拌摩擦增材制造(FSAM)
搅拌摩擦增材制造是一种从搅拌摩擦焊接技术发展而来的固相增材技术,原理如图7所示。增材效率高、成本低;在增材过程中没有金属的熔化和凝固,可以避免熔池带来的冶金缺陷问题,同时搅拌摩擦过程中塑性变形还可以起到晶粒细化的作用,获得低成本、高质量增材产品。
张昭等人基于Abaqus生单元法和移动热源法建立两种搅拌摩擦增材制造Ti6Al4V有限元模型,研究搅拌摩擦增材的温度分布和晶粒生长情况。研究结果发现,横向增材峰值温度大于纵向增材峰值温度,在搅拌区冷却及增材累积过程晶粒粗化,并且由β相转变为α相,由于不同热循环次数的影响,低层搅拌区晶粒尺寸较大,高层搅拌区晶粒尺寸较小。
4.2 超声波增材制造(UAM)
超声波增材制造(UAM)是一种新的快速成形工艺,用于在室温或接近室温的条件下制造金属基复合材料。较低的加工温度使复合材料能够通过利用嵌入在基体中的高度预应变的形状记忆合金(SMA)纤维产生的回复应力。
Hahnlen等人利用UAM技术制造NiTi-Al复合结构界面强度研究,纤维-基体界面的强度是UAM复合材料的限制因素。结果发现,平均界面剪切强度为7.28MPa,纤维与界面结合方式是机械键合,未发生化学键合或冶金键合方式。
为提高碳纤维增强材料(CFRP)的承重能力,使其能在航空航天和汽车工业上进一步推广应用,James等人进行了CFRP/Ti的超声波增材制造中剪切破坏强度的研究,研究结果发现,采用UAM技术可以实现CFRP/Ti的结构制造,超声波能量和表面粗糙度都对UAM制成结构的剪切强度产生积极影响,在焊接前增加界面的表面粗糙度有助于增加最终焊缝的剪切破坏负荷。
综上所述,关于超声波增材制造钛合金的研究较少,主要进行的是金属基复合材料的研究,以增强复合材料的特定性能满足实际生产应用,分析认为,在未来研究中,应侧重于提升复合材料的力学性能研究方向。
5 结束语
随着现代工业的迅速发展,轻量化的设计成为结构件的发展方向,对结构件的性能和质量要求变的越来越严格,钛合金增材制造技术的迅速发展,可以进一步扩大钛合金结构件的应用范围,提高钛合金增材件的性能,增强结构稳定性。综合国内外所研究的钛合金增材制造技术和现代工业的发展方向,未来钛合金增材制造技术注定将朝着绿色、经济、稳定、快速的方向发展。
1)从绿色发展方向来看,搅拌摩擦增材制造起步阶段较晚,还处于试验研究阶段,未来进行多金属材料的复合结构增材制造,实现特定结构的特种性能,将是该技术的一个研究方向。
2)对于经济、稳定的发展方向,则需要进行电弧增材的稳定性过程探索,尤其是新型复合电弧增材制造的稳定性研究。
3)对于快速性的发展方向,目前阶段激光/电子束增材制造工艺相对较为成熟,应继续探究激光增材制造的经济适用性,从实际生产中的装配精度到生产制造中的工艺优化过程,进而降低生产成本,为钛合金增材制造结构件大面积的生产应用打下基础。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。